Dominik Sorger

Petrologische und Petrographische Untersuchung granulitfazieller Metamorphite der Böhmischen Masse

Bakkalaureatsarbeit

An der naturwissenschaftlichen Fakultät der Karl-Franzens Universität Graz

unter der Betreuung von Prof. Dr. Christoph Hauzenberger Institut für Erdwissenschaften, Abteilung für Mineralogie und Petrologie

Graz, Dezember 2012

Danksagung

An dieser Stelle möchte ich mich bei all jenen bedanken, ohne die eine Fertigstellung dieser Arbeit nicht möglich gewesen wäre. Besonderer Dank gilt hierbei Prof. Dr. Christoph Hauzenberger, der mir immer mit Rat und Tat zur Seite stand und mir auch viel Geduld entgegenbrachte. Weiters möchte ich Herrn Jürgen Neubauer danken, für die Unterstützung bei der Arbeit mit dem Rasterelektronenmikroskop. Zu guter Letzt sei auch noch Herr Anton Pock erwähnt, der bei der Erstellung der Dünnschliffe eine große Hilfe war.

Abstract

Die bei dieser Arbeit untersuchten Proben wurden einerseits von Dr. Manfred Linner (MA-1 bis ML09-16) und andererseits bei einem Geländeaufenthalt mit Prof. Dr. Christoph Hauzenberger und Dr. Manfred Linner selbst genommen (BA1-BA33). Aus einem ausgewählten Teil der Proben wurden Dünnschliffe angefertigt, welche im Lichtmikroskop petrographisch und im Rasterelektronenmikroskop mineralchemisch untersucht wurden. Die Daten der chemischen Analysen wurden mit PET (Petrological Elementary Tools for Mathematica) *(Edgar Dachs, 2004)* verrechnet. Anschließend wurde mithilfe von geothermobarometrischen Plots versucht die Druck-und Temperaturbedingungen bei der Metamorphose zu rekonstruieren.

Bei den untersuchten Gesteinen handelt es sich um magmatische Gneise, Cordierit-Granat-Granulite, mafische Granulite und Amphibolite, welche bei hoher Temperatur (~770°C und 5-6 kbar) metamorph überprägt und teilweise aufgeschmolzen wurden. Besonderes Augenmerk wurde auf einen möglichen Zonarbau der Granate und auf das Vorhandensein bzw. mögliche Bildungsreaktionen von Cordierit gelegt. Die Granate zeigten in den untersuchten Proben eine homogene Verteilung, nur am Rand konnte eine retrograde Diffusionszonierung festgestellt werden. Cordierite wurden zumindest teilweise auf Kosten des Granates durch die Reaktion Grt + Sil + Qtz = Crd gebildet.

Inhaltsverzeichnis

1.	Einleitu	ng	1
	1.1	Aufgabenstellung	1
	1.2	Geographischer Überblick	3
	1.3	Geologischer Überblick	3
2.	Analytis	che Methoden	8
	2.1	Durchlichtmikroskopie	8
	2.2	Rasterelektronenmikroskopie	8
3.	Petrogra	aphie	9
	3.1	Probe ML04-17	10
	3.2	Probe ML04-68	11
	3.3	Probe ML05-15	13
	3.4	Probe ML05-16	15
	3.5	Probe ML07-1B	17
	3.6	Probe ML09-16	20
	3.7	Probe BA1	22
	3.8	Probe BA7	23
	3.9	Probe BA10	25
	3.10	Probe BA33	27
4.	Mineral	chemie	28
	4.1	Probe ML04-68	28
	4.2	Probe ML05-15	30
	4.3	Probe ML05-16	32
	4.4	Probe ML07-1B	35
	4.5	Probe ML09-16	38
	4.6	Probe BA7	41
	4.7	Probe BA10	44
5.	Geother	mobarometrie	49
6.	Diskussi	on und Zusammenfassung	52
7.	Literatu	r	53
8.	Anhang		54

1 Einleitung

1.1 Aufgabenstellung

Ziel der Arbeit ist es, Granulite der Böhmischen Masse mittels petrographischer und mineralchemischer Methoden zu untersuchen und zu vergleichen. Thermobarometrische Methoden wurden benutzt, um die metamorphen Bildungsbedingungen zu eruieren.

Von den insgesamt 52 aus dem untersuchten Gebiet genommenen Proben wurden die beim Geländeaufenthalt selbst genommenen (BA1-BA33) anhand von gemessenen GPS Daten in eine Karte (*Abb. 1*) eingetragen und beschriftet. Die von Dr. Manfred Linner stammenden Proben (MA-1 bis ML09-16) wurden schematisch in die Karte eingetragen, jedoch wegen Überschneidungen ohne genauere Beschriftung.

Insgesamt arbeiteten drei Personen an diesem Projekt und behandelten eine gleiche Anzahl der vorhandenen Proben. Dazu zählen: Donia Daghighi, Katica Simic und Dominik Sorger.

Abbildung 1: Probenkarte

1.2 Geographischer Überblick

Oberösterreich, mit der Landeshauptstadt Linz, befindet sich im nordwestlichen Teil Österreichs. Im Süden grenzt es an Salzburg und die Steiermark, im Westen an Deutschland, im Norden an Tschechien sowie im Osten an Niederösterreich. Mit einer Fläche von 11.982 km2 ist Oberösterreich das viertgrößte, die rund 1,4 Millionen Einwohner machen es bevölkerungsmäßig zum drittgrößten, Bundesland Österreichs.

Die traditionelle Aufteilung Oberösterreichs sieht wie folgt aus: Traunviertel, Mühlviertel, Hausruckviertel und das Innviertel.

Oberösterreich hat Anteil an drei Großlandschaften: der Böhmischen Masse, die vorwiegend nördlich der Donau liegt und sich als waldreiches Hochland mit Mittelgebirgsrücken zeigt, dem Alpenvorland, wo reich gegliedertes Hügelland mit weitgehend ebenen Schotterflächen wechselt, und den Alpen mit den dicht bewaldeten Bergen der Flyschzone und Kalkvoralpen, sowie den schroffen Gebirgen der Kalkalpen. Zwischen diesen Großlandschaften vermitteln das Donautal am Südrand der Böhmischen Masse und das oberösterreichische Seengebiet am Alpenrand (Linner, Mandl und Rupp, 2011). Das Donautal zeichnet sich durch einen Wechsel von Schluchtstrecken und ausgedehnten Auen aus, der sich durch epigenetisches Einschneiden der Donau am Südrand der Böhmischen Masse entwickelte. So ist die Donau von Passau bis Aschach, von Ottensheim bis Linz und ab Ardagger als Schlucht in die kristallinen Gesteine eingeschnitten (Linner, Mandl und Rupp, 2011).

1.3 Geologischer Überblick

1.3.1. Moldanubikum

Der Untergrund im behandelten Gebiet ist zu einem großen Teil durch Gesteine des **Moldanubikums** aufgebaut. Dieses bildet im nördlich der Donau gelegenen Mühlviertel den Südrand des Böhmischen Granitmassivs und zeichnet sich durch hoch metamorphe und anatektische Gesteine der exhumierten unteren und mittleren Kruste aus.

Es wird als interner Teil des variszischen Orogens gedeutet, das durch Konvergenz zwischen den Paläokontinenten Gondwana und Laurussia im Devon und Karbon gebildet wurde. Um 360 Ma kollidierten in diesem Bereich kontinentale Krustenstücke, was zur Bildung des Moldanubikums führte. Durch anhaltende Konvergenz kam es um 350-340 Ma zur Exhumation von Granuliten der Unterkruste und deren Einbindung in den Deckenbau, wodurch sie in eine hohe tektonische Position gelangten und über die schwächer metamorphen Einheiten des Moravikums geschoben wurden. Magmatismus setzte ab dem mittleren Karbon bis zur Karbon/Perm-Grenze (330-300 Ma) ein, indem es zur Bildung granitischer und granodioritischer Schmelzen kam, die in die moldanubischen Decken und das Bavarikum intrudierten. Ursache hierfür war vermutlich ein zuvorgegangener Verlust von Teilen der Mantellithosphäre, die sich durch die variszische Orogenese verdickt hatte. Mögliche Prozesse die zu so einem Materialverlust führen sind "Mantle Downwelling (Convective Removal)" oder Delamination.

1.3.2. Südböhmischer Batholith

Die Gesteine des Südböhmischen Batholiths bilden den Großteil des Mühlviertels und zählen zu diesem karbonen Intrusionsereignis. Sie sind in der Karte in violetten Farben dargestellt und durch den grobkörnigen Weinsberger und den später intrudierten, feinkörnigen Mauthausener Granit repräsentiert *(vgl. Tab. 1, Nr. 206, 222, 223)*. Im Bereich südlich der Pfahlstörung bilden Weinsberger Granit und Schlierengranit die dominante Lithologie.

1.3.3. Bavarikum

Die **bavarischen Einheiten** befinden sich vorwiegend südwestlich der dextralen Pfahlstörungszone (*F.K.Bauer, 1980*), die NW-SE-streicht und teilweise entlang der Großen Mühl verläuft (Weblink). Im Mühlviertel liegen sie allerdings vorwiegend westlich der Rodlstörung, im Bereich Linz/St.Magdalena – Bad Leonfelden – Ottensheim, und sind in Abb. 2 in Form eines orange-färbigen Keils aus Perlgneis (*vgl. Tab. 1, Nr. 239*) zu sehen. Im Hausruck- und im Innviertel schließen sie nach Süden unmittelbar an die Donau an und treten im Bereich zwischen Engelhartszell und Niederkappel kleinräumig nördlich der Donau auf.

Das Bavarikum wird im Vergleich zu den moldanubischen Decken als später exhumiertes Krustenstück und eigenständige tektonische Einheit innerhalb des Moldanubikums betrachtet.

Lithologisch setzt es sich aus Paragneis-Migmatiten mit hohem Aufschmelzungsgrad und aus verschiedenen Graniten zusammen. Auch Amphibolit, Graphitgneis, Marmor und Kalksilikatfels treten auf. Die Bildungstemperaturen für Paragneise, Migmatite, Amphibolite, Marmore, Quarzite und Orthogneise lagen bei ca. 770°C in Bildungstiefen von bis zu 25 km (Weblink). Die 2 wesentlichen Prozesse im Bavarikum stellen die Intrusion des Weinsberger Granit und darauffolgende Hochtemperatur/Niedrigdruckmetamorphose und Migmatisierung dar (Linner, Mandl und Rupp, 2011). Die Migmatisierung von Paragesteinen führte um 315 Ma zur Bildung von cordieritführendem Biotitgranit. Der bavarische Schlierengranit entstand durch Vermischung von älterem aufschmelzendem Paragneis mit intrudierendem Weinsberger Granit. Um etwa 290 Ma war das Bavarikum mit samt seinen Intrusionen abgekühlt.

1.3.4. Alpidische Molasse, Paläogen und Neogen auf der Böhmischen Masse

Nach einer langen Erosionsphase im Paläogen kam es im Obereozän zu einer erneuten Transgression aus der Tethys nach Norden hin. Aus diesem Ereignis entwickelte sich ab dem Unteroligozän zwischen dem europäischen Vorland (Norden) und den Alpen (Süden) das marine Molassebecken. Die Sedimente dieses Beckens werden in tektonisch unveränderte (autochtone), abgescherte und transportierte (allochtone) und mit dem Untergrund umgelagerte (paraautochtone) Molasse unterteilt. Die Molassesedimentation endete mit der Ablagerung des Hausruckschotters. Molasseablagerungen treten im Arbeitsgebiet nur untergeordnet als oligozäne bis miozäne Vorlandmolasse in Form der marinen Plesching-Formation, Linzer Sand und etwa gleichaltrigem

Vorlandmolasse in Form der marinen Plesching-Formation, Linzer Sand und etwa gleichaltrigem Schlier (Kiscellium-Egerium) auf und sind durch türkise und hellblaue Farbtöne gekennzeichnet. Der Schlier im Bereich südlich von Schärding stammt aus dem Ottnangium.

1.3.5. Pleistozän bis oberstes Neogen

Die Pleistozän /Neogen-Wende ist mit einem weltweiten Abkühlungsereignis und damit einhergehendem Eisaufbau und Lössablagerungen korreliert. Die ältesten Ablagerungen dieses Abschnitts bilden quarzreiche terrassenartige Restschotterkörper, die heute in verschiedenen Höhen vorliegen (vgl. Tab. 1, Nr. 37). Aus diesen Restschottern stammen die Deckenschotter des Günz (ältere Deckenschotter). Deckenschotter und eiszeitliche Lössablagerungen sind durch gelbe Farbtöne gekennzeichnet und treten nicht großflächig auf.

		Bezeichnung	Beschreibung	Nr.				
			Verwitterungslehm, Lehm überwiegend umgelagert,	12				
		Würm	Wurm und alter					
ois	ogen		an der Oberfläche vorwiegend Würm	15				
lugza	s Nec	Mindel	Jüngerer Deckenschotter, meist unter Löss/	29				
listo	ş		Lösslehm-Bedeckung					
Ъ	obel	Günz	Alterer Deckenschotter, meist unter Löss/	33				
			Lossienm-Bedeckung					
		oberstes Neogen bis Altpleistozän	Schotter in verschiedenen Höhenlagen	37				
iogen,	dasse		Plesching-Formation (Phosphoritsande, fossilreiche	67				
e, Palä	óhm. N		Grobsande), marin; unteres Ottnangium					
Molasse	en auf Bö	Vorlandmolasse	Linzer Sand, Melker Sand, Sandstein von Wallsee u.	77				
Apid.	A pid Neog		Perg, marin; Kiscellium-Egerium					
	_		Mauthausener Granit; fein- bis mittelkörnige,					
			hellgraue und massige I-Typ-Biotitgranite bis	206				
			-Granodiorite					
		Südböhmischer Batholith	Weinsberger Granit; Grob- bis riesenkörniger	222				
			Biotitgranit, Großkalifeldspäte					
			Weinsberger Granit - Randbereich; Grob-	223				
			bis riesenkörniger Biotitgranit, Großkalifeldspäte					
			Schärdinger Granit; Mittelkörniger S-Typ-Biotitgranit,					
			Cordierit fuhrend, biotit- und	232				
			cordieritreiche Restitschollen					
			Schlierengranit; grobkörniger Granit bis Granodiorit,	235				
			schlierig, oft rötliche Großkalifeldspäte					
	(eg		Cordieritreicher-Migmatit - Typ Wernstein;					
	Mas		massiger, grob strukturierter Migmatit, biotit- und	237				
٦	eu [ordieritreiche oder feldspatreiche Schlieren					
ĬŻ	isch		Diatektischer Paragneis ("homogenisierter Perlgneis");					
	hh		weitgehend homogener, teils massiger Migmatit	238				
00	ыл Ю		mittelkörnig, z.T. Paragneis-Schollen					
Σ	рц		Metablastischer/metatektischer Paragneis ("Perlgneis"),					
	talli	Bavarikum	Biotitreicher, fein- bis mittelkörniger Paragneis bis	239				
	Kris	Lavantant	Migmatit, oft Cordierit fuhrend und mit	255				
	\smile		Paragneis-Relikten, z.T. schlierig					
			Übergangszone von Paragneis zu anatektischem	2/10				
			Paragneis	240				
			Paragneis ("Schiefergneis"); Biotitreicher Paragneis mit					
			Sillimanit, Cordierit und Granat;	241				
			feinkörniger Biotit-Plagioklasgneis					
			Paragneise im Kropfmühl-, Donauleiten- und					
			Herzogsdorf-Komplex; feinkörnig grauer Paragneis,	242				
			teils gebändert; migmatitischer Paragneis mit	242				
			pegmatoiden Lagen					
			Amphibolit	245				

 Tabelle 1: verändert nach der Legende aus "Geologische Karte von

 Oberösterreich 1:200 000; Rupp, Linner Mandl, 2011"

Abbildung 2: Geologische Karte, verändert nach "Geologische Karte von Oberösterreich 1 : 200.000", Rupp, Linner, Mandl 2011

2 Analytische Methoden

2.1 Durchlichtmikroskopie

Von den in der Probenliste (*Tab. 3*) markierten Proben wurden Dünnschliffe angefertigt und mit lichtmikroskopischen Methoden untersucht, der Mineralbestand bestimmt und markante Stellen fotografiert. Sieben der zehn angefertigten Schliffe wurden ausgewählt und mit dem Rasterelektronenmikroskop chemisch analysiert.

2.2 Rasterelektronenmikroskopie

Die mineralchemischen Analysen mit dem Rasterelektronenmikroskop JEOL-JSM-6310 wurden im Bereich Mineralogie und Petrologie am Institut für Erdwissenschaften durchgeführt. Vor den Messungen wurden die polierten Dünnschliffe noch mit Kohlenstoff bedampft um sie elektrisch leitend zu machen.

Die Elemente Si, Ti, Al, Fe, Mn, Mg, Ca, Ba, Cl und K wurden mit dem energiedispersiven Detektor (EDX), die Elemente Na und F mit dem wellenlängendispersiven Detektor (WDX) gemessen. Die dabei verwendeten Elementstandards sind in der unten stehenden Tabelle (*Tab. 2*) aufgelistet. Zusätzlich wurden BSE (Back Scattered Electrons) Bilder von den gemessenen Stellen erstellt.

Si	Adular
Ti	Titanit
Al	Adular
Fe	Granat
Mn	Rhodonit
Mg	Granat
Ca	Wollastonit
Ba	Barit
Na	Jadeit
K	Adular
F	F-Phlogopit
Cl	Atacamit

 Tabelle 2: Standards der REM-Analysen

3 Petrographie

Die in der Probenliste *(Tab. 3)* markierten Proben wurden unter dem Lichtmikroskop untersucht. Die Proben ML04-68, ML05-15, ML05-16, ML07-1B, ML09-16, BA7, BA10 wurden zusätzlich unter dem Rasterelektronenmikroskop chemisch analysiert.

Probe	Ort	GPS N	GPS E	Biotit	Granat	Cordierit	Clinopyroxen	Orthopyroxen	Amphibol	Plagioklas	Kalifeldspat	Alumosilikat	Lithologie	Anmerkung
MA-1		48-18,410	014-14,168										Al-reicher Migmatit, "Kinzigit"	Grt zoniert
ML04-6B		48-18,493	014-15,976										quarzitischer Paragneis	
ML04-8A		48-18,489	014-16,001										Migmatit, grobkörnig	
ML04-11		48-18,345	014-15,840										metablastischer Grt-Bt-Paragneis	
ML04-14B		48-18,372	014-15,707	x		x				x	x		Crd-Migmatit	
ML04-17		48-20,101	014-11,403	x						x	x		homogener Migmatit	Magmatische Textur
ML04-58		48-18,403	014-15,477	x		x				x	x		Crd-Migmatit	Flockiger Graphit
ML04-68		48-18,454	014-14,652	x	х					х			Grt-Bt-Paragneis	
ML04-78		48-19,935	014-11,475	x	x					X	x		Grt-Bt-Paragneis, mylonitisch	Grt-Abbau
ML04-79B		48-22,307	014-17,745	x	х				x	x			Kalksilikatfels	
ML05-13		48-18,391	014-14,098										Grt-Bt-Paragneis	Tripelpunkttextur
ML05-15		48-18,398	014-14,129	x					x	x			Amphibolit	
ML05-16		48-18,403	014-14,163	x	x	x				x	x	x	Al-reicher Migmatit, "Kinzigit"	Grt zoniert
ML05-17A		48-18,405	014-14,173										Al-reicher Migmatit, "Kinzigit"	Grt zoniert
ML05-17B		48-18,405	014-14,173	x	х	x				x	x	x	Al-reicher Migmatit, "Kinzigit"	Grt zoniert
ML05-19B		48-18,134	014-14,213										Crd-Migmatit	
ML07-1A		48-19,844	014-11,832	x	x	x				x	x		Grt-Crd-Migmatit	
ML07-1B		48-19,844	014-11,832	x	x	x				x			Grt-Crd-Migmatit	Reaktion Grt+Sil zu Crd
ML09-16		48-18,238	014-15,954	x			x	x	x	x			Mafischer Granulit	Tripelpunkttextur
BA1	Plesching, Gruber Stein	48-18,563	014-20,183	x						x	x		Migmatischer Bt-Paragneis	
BA2	Plesching.Gruber Stein	48-18.563	014-20,183										Paragneis	Übergang Schmelze
BA3	Plesching.Gruber Stein	48-18.563	014-20,183										Paragneis Scholle	
BA4	Steinbruch Margarethen	48-18.386	014-15.716	x		x				x	x	x	Crd-Migmatit	
BA5	Steinbruch Margarethen	48-18.386	014-15.716										Feinkörniger Gneis	
BA6	Steinbruch Margarethen	48-18.386	014-15.716										Feinkörniger Gneis	
BA7	Donautal-Hainzenbachtal	48-18,415	014-14.116	x	x			x		x			Grt-Bt-Gneis	
BA8	Donautal-Hainzenbachtal	48-18.415	014-14,116	x	x	x				x	x	x	Grt-Crd-Migmatit	
BA9	Donautal-Hainzenbachtal	48-18.415	014-14,116										Grt-Crd-Migmatit	
BA10	Donautal-Hainzenbachtal	48-18,415	014-14.116	x	x	x					x	x	Grt-Crd-Migmatit	
BA11	Donautal-Hainzenbachtal	48-18,415	014-14.116										Grt-Crd-Migmatit	
BA12	Donautal-Hainzenbachtal	48-18.415	014-14.116										Grt-Granitgneis	
BA13	Wilhering	48-19,251	014-19,251										Grt-Crd-Fels	
BA14	Wilhering	48-19,251	014-19,251										Crd-Gneis, feinkörnig	
BA15	Wilhering	48-19,124	014-12,328										Bt-Gneis	gut geschiefert
BA16	Wilhering	48-19,124	014-12.328										Bt-Crd-Gneis	0 0
BA17	Oberlandshaag	48-22.554	014-01.980										Monzonit	
BA18	Oberlandshaag	48-22.669	014-01.936										Schlieren" Granit	
BA19	ehem. Steinbruch Rannariedl	48-29,100	014-45,855										Paragneismylonit	
BA20	ehem. Steinbruch Rannariedl	48-29,100	014-45,855										Paragneismylonit, feinkörnig	
BA21	ehem. Steinbruch Rannariedl	48-29,100	014-45,855										Paragneis/Kalksilikat Mylonit	
BA22	ehem. Steinbruch Rannariedl	48-29,100	014-45.855										Kalksilikatmylonit	
BA23	ehem. Steinbruch Rannariedl	48-29,100	014-45.855										Kalksilikat	
BA24	ehem. Steinbruch Rannariedl	48-29,100	014-45,855										Kalksilikat	
BA25	ehem. Steinbruch Rannariedl	48-29,100	014-45,855										Kalksilikatmarmor, grobkörnig	
BA26	ehem. Steinbruch Rannariedl	48-29,100	014-45.855										Kalksilikatschiefer	retrograd deformiert
BA27	ehem. Steinbruch Rannariedl	48-29,100	014-45,855										Kalksilikat	6
BA28	ehem. Steinbruch Rannariedl	48-29,100	014-45.855										Bt-Gneis, feinkörnig	streicht anders aus
BA29	Wernstein	48-29.101	014-45.856	x	X	x				x	x		Bt-Crd-Migmatit	
BA30	Wernstein	48-29,102	014-45.857										Migmatit	große Crd Schlieren
BA31	Wernstein	48-29 103	014-45.858										Migmatit	große Crd Schlieren
BA32	Wernstein	48-29 104	014-45.859	x		x				x	x		Migmatit	große Crd Schlieren
BA33	Wernstein	48-29,424	013-27,021	x					x	x			Migmatit	aufgeschmolzen, rekristallisiert

Tabelle 3: Probenliste und Mineralbestand

3.1 Probe ML04-17

Probe ML04-17 ist ein großteils aufgeschmolzener Migmatit mit magmatischer Textur. Die Hauptbestandteile bilden Plagioklas, Kalifeldspat, Quarz und Biotit *(Abb. 3)*. Die Feldspäte haben Korngrößen von etwa 0,5mm, die Biotite sind größer mit etwa 0,5 bis 1,5 mm.

Abbildung 3: Lichtmikroskop-Bild ML04-17

Viele Biotite haben Einschlüsse, vor allem von Zirkon (30-100 μ m). Durch den radioaktiven Zerfall von U und Th im Zirkon wird das Kristallgitter des Biotits zerstört und um den Zirkon bilden sich dunkle pleochroitische Höfe (*Abb. 4*).

Abbildung 4: Lichtmikroskop-Bild ML04-17

3.2 Probe ML04-68

Probe ML04-68 ist ein Granat Biotit Paragneis. Er zeigt einen Lagenwechsel von hellen Mineralen, hauptsächlich Plagioklas und Quarz und dunklem Biotit *(Abb. 5)*. Die Biotite bilden die Schieferung ab und haben einen dunklen rotbraunen Farbton, Korngrößen von 0,5 bis 2 mm und zeigen einen stark ausgeprägten Pleochroismus.

Abbildung 5: Lichtmikroskop-Bild ML04-68

Sowohl in den hellen als auch in den dunklen Lagen finden sich vereinzelte Granatkörner, die jedoch meist nicht größer sind als 1mm. Die größeren Granatkörner sind teilweise komplett von Biotit umwachsen, die jedoch keine deutliche Reaktionsbeziehung zwischen beiden Mineralen anzeigen (*Abb. 6*).

Abbildung 6: Lichtmikroskop-Bild ML04-68

Auch im BSE Bild erkennt man eindeutig den Lagenwechsel (*Abb. 7*). Die chemische Analyse an den größeren Granaten zeigt, dass sie besonders Fe reich sind (*Tab. 4*) und keinen signifikanten chemischen Unterschied zwischen Kern und Randbereich aufweisen.

Abbildung 7: BSE-Bild ML04-68. Maßstabbalken: 2mm.

3.3 Probe ML05-15

Probe ML05-45 ist ein Amphibolit und setzt sich aus Plagioklas, Quarz, Magnesiohornblende und Bioit zusammen. In einer Matrix aus Quarz und Plagioklas liegen die meist kleineren (0,5mm-1mm) Amphibolkörner (*Abb. 8*). Besonders gut erkennbar sind die 124° bzw. 56° Winkel zwischen den Spaltflächen.

Abbildung 8: Lichtmikroskop-Bild ML05-15

An einigen Stellen gibt es Anhäufungen von Biotit (*Abb. 9*), welcher sowohl anhand der Farbe (deutlich dunkler und rötlich) als auch anhand der Größe (mehrere mm) leicht von den Hornblenden unterscheidbar ist.

Abbildung 9: Lichtmikroskop-Bild ML05-15

Auch im BSE Bild ist der Größenunterschied zwischen den etwas helleren Biotiten und den Amphibolen erkennbar (*Abb. 10*). Die durch den Ordnungszahlkontrast weiß erscheinenden Körner stellten sich als Illemnit beziehungsweise als Zirkoneinschlüsse im Biotit heraus.

Abbildung 10: BSE-Bild ML05-15. Maßstabbalken: 0.5mm.

Bei genauerer Betrachtung der Hornblenden erkennt man helle Lamellen in den ansonsten eher dunkelgrauen Körnern (*Abb. 11*). Die Messung bei am1 weißt einen erhöhten Fe und einen verringerten Ca Gehalt im Vergleich zu am2, sowie auch den restlichen Messungen (am3-am5) auf (*Tab. 7*).

Abbildung 11: BSE-Bild ML05-15. Maßstabbalken: 100µm.

3.4 Probe ML05-16

Probe ML05-16 ist ein Aluminium reicher Migmatit. Der nadelige Sillimanit ist häufig mit Cordierit verwachsen, durchzieht den Dünnschliff und umschließt dabei andere Mineralkörner wie zum Beispiel Granat (*Abb. 12*). Granate kommen als 0.1 bis 0.5 mm große unregelmäßig begrenzte Körner, meist von mehrere mm großem Cordierit umwachsen, vor und zeigt texturell, dass Cordierit auf Kosten des Granats wächst.

Abbildung 12: Lichtmikroskop-Bild ML05-16

An vielen Stellen tritt Sillimanit in den Randbereichen aber auch innerhalb von Biotitkörnern auf (*Abb. 13*). Grund dafür ist wahrscheinlich, eine Reaktionsbeziehung zwischen Biotit und Sillimanit.

Abbildung 13: Lichtmikroskop-Bild ML05-16

Die Hauptgemengteile der Probe sind Plagioklas, Kalifeldspat, Biotit, Granat, Cordierit und Sillimanit. Darüber hinaus finden sich auch Apatit und Zirkone, die z.T. als Einschlüsse in Biotit vorkommen (*Abb. 14*).

Abbildung 14: BSE-Bild ML05-16. Maßstabbalken: 0.5mm

Einige der Kalifeldspäte zeigen perthitische Entmischungen (*Abb. 15*). Die helleren Stellen (Messungen kf1 und kf2) sind K-reicher Alkalifeldspat die dunkleren, etwa 50µm langen Lamellen (kf3) haben Na reiche Chemismen (*Tab. 10*).

Abbildung 15: BSE-Bild ML05-16. Maßstabbalken: 50µm.

3.5 Probe ML07-1B

Probe ML07-1B ist ein Granat-Cordierit Migmatit. Die meisten Granate haben eine Größe von 0,5mm-1mm. An vielen Stellen sind Reaktionsbeziehungen zwischen Granat und Cordierit erkennbar Hierbei wird Granat abgebaut und Cordierit gebildet (*Abb. 16*)..

Abbildung 16: Lichtmikroskop-Bild ML07-1B

Die oft sehr großen Cordierite (mehrere mm) sind zum Teil pinitisiert. (Abb. 17).

Abbildung 17: Lichtmikroskop-Bild ML07-1B

Im Rasterelektronenmikroskop sind die Reaktionssäume zwischen Granat, Biotit und Cordierit gut erkennbar *(Abb. 18).* Eine mögliche prograde Cordieritbildung aus Granat könnte folgende Reaktion sein:

$$Grt + Sil + Qtz = Crd$$
 (1)

Die helle Färbung des Granats lässt auf einen hohen Eisengehalt schließen, was eine Messung auch bestätigt (*Tab. 17*).

Abbildung 18: BSE-Bild ML07-1B. Maßstabbalken: 1mm

Die im BSE Bild mittelgrau erscheinenden Cordiertite haben eine Größe von bis zu 2mm und sind an den Rändern meist alteriert *(Abb. 19)*. Die unter dem Lichtmikroskop opaken Phasen stellten sich im Rasterelektronenmikroskop als Pyrite heraus.

Abbildung 19: BSE-Bild ML07-1B. Maßstabbalken: 1mm

3.6 Probe ML09-16

Probe ML09-16 ist ein mafischer Granulit, der sich aus einer plagioklas- und quarzreichen Matrix und Biotit, Magnesiohornblende und Orthopyroxen mit einer maximalen Korngröße von 1mm zusammensetzt *(Abb. 20)*. Die Amphibole zeigen Stellenweise eine poikiliblastische Textur. Des weiteren findet man auch noch einige kleine Clinopyroxene mit Korngrößen von 0,2mm.

Abbildung 20: Lichtmikroskop-Bild ML09-16

An vielen Stellen besteht die Probe hauptsächlich aus der felsischen feinkörnigen (0,1mm-0,2mm) Matrix (Abb. 21).

Abbildung 21: Lichtmikroskop-Bild ML09-16

Im BSE Bild erscheinen die Orthopyroxene deutlich heller als die Clinopyroxene und Amphibole (*Abb. 22*). Grund dafür ist der Ordnungszahlkontrast, da die Orthopyroxene mit einem Xmg von 0,6 einen deutlich höheren Fe Anteil besitzen als die Clinopyroxene und Amphibole mit einem Wert von etwa 0,75 (*Tab. 19,21*).

Abbildung 22: BSE-Bild ML09-16. Maßstabbalken: 0.5mm

3.7 Probe BA1

Probe BA1 ist ein migmatischer Biotit Paragneis, der keine Foliation zeigt. Die Hauptkomponenten bilden Plagioklas, Kalifeldspat und Biotit. An einigen Stellen sind die größeren Kalifeldspäte (1mm-2mm) von mehreren kleinen Biotiten umwachsen (*Abb. 23*).

Abbildung 23: Lichtmikroskop-Bild BA1

Ähnlich den anderen Proben, tritt auch hier Zirkon (~40µm) als Einschluss in Biotit auf und führt zur Bildung von pleochroitischen Höfen (*Abb. 24*).

Abbildung 24: Lichtmikroskop-Bild BA1

3.8 Probe BA7

Probe BA7 ist ein Granat Biotit Gneis. Er zeigt einen Lagenwechsel zwischen einerseits hellen Plagioklas-, Kalifeldspat- und Quarzreichen und andererseits Biotit und Granat reicheren Lagen *(Abb. 25)*. Dieser Lagenwechsel ist jedoch nicht so gut ausgeprägt wie bei Probe ML04-68 *(Abb. 5)*, weiters ist auch der Mächtigkeit der einzelnen Lagen hier deutlich größer (~2mm).

Abbildung 25: Lichtmikroskop-Bild BA7

In den Biotit reichen Lagen treten auch vereinzelt kleine Orthopyroxene auf (0,2mm), die jedoch nur schwer als solche zu identifizieren sind da keine Spaltflächen erkennbar sind (*Abb. 26*).

Abbildung 26: Lichtmikroskop-Bild BA7

Die im Elektronenmikroskop hellgrauen Granate haben eine Größe von bis zu 2mm und zeigen mehrere kleine Einschlüsse, meist Quarz und/oder Plagioklas (*Abb. 27*). Sie sind besonders eisenreich, eine Zonierung konnte durch Messungen an Kern und Rand jedoch nicht festgestellt werden (*Tab. 24 Messung gt1,gt2*).

Abbildung 27: BSE-Bild BA7. Maßstabbalken: 2mm

3.9 Probe BA10

Probe BA10 ist ein Granat-Cordierit Migmatit. An Stellen an denen Biotit oder Granat zusammen mit Cordierit auftreten sind deutliche Reaktionssäume an den Korngrenzen erkennbar *(Abb. 28)*. Die Granate haben Korngrößen von 0,5 bis 4mm und sind vor allem im Kernbereich sehr einschlussreich. Im BSE Bild (Abb. 30) deutlich besser erkennbar sind die Korngrößen von Cordierit (1-2mm), Quarz und Kalifeldspat (~1mm) und Biotit (1-2mm).

Abbildung 28: Lichtmikroskop-Bild BA10

Feinkörniger Sillimanit zieht sich durch die gesamte Probe, er umwächst viele Mineralkörner, einige werden aber auch durwachsen, wie Cordierit und Granat (*Abb. 29*).

Abbildung 29: Lichtmikroskop-Bild BA10

Neben den Hauptbestandteilen Cordierit, Granat, Biotit, Kalifeldspat und Quarz lassen sich im Elektronenmikroskop auch noch einige andere Phasen wie Illmenit und Pyrit identifizieren. Die Reaktionssäume zwischen Cordierit und Biotit sind auch im BSE Bild deutlich erkennbar (*Abb. 30*).

Abbildung 30: BSE-Bild BA10. Maßstabbalken: 1mm.

Die Granate sind besonders eisenreich (Xalm ~0,8) und die größeren haben zahlreiche Einschlüsse von Pyrit, Zirkon, Biotit und Quarz (*Abb. 31*). Durch den größten Granat der Probe wurde ein chemisches Zusammensetzungsprofil gelegt um eine mögliche Zonierung festzustellen. Die Ergebnisse des Profils werden unter 4.7 genauer beschrieben.

Abbildung 31: BSE-Bild BA10

3.10 Probe BA33

Probe BA33 ist ein Migmatit, der stark aufgeschmolzen wurde, keine Foliation zeigt und der sich aus einer hellen Plagioklas und Kalifeldspat reichen Matrix sowie dunklen 0,5mm-1mm großen Biotiten und Cordieriten zusammensetzt *(Abb. 32)*. Die Cordierite sind zum Teil pinitisiert, die Biotite stellenweise komplett chloritisiert. Kalifeldspäte und Plagioklase zeigen Anzeichen einer Serizitisierung.

Abbildung 32: Lichtmikroskop-Bild BA33

4 Mineralchemie

4.1 Probe ML04-68

Die Messpunkte wurden im BSE Bild eingetragen (Anhang: Abb. 38).

Die Granate der Probe ML04-68 sind besonders eisenreich mit einer Almandinkomponente zwischen 73% und 79% (*Tab. 4*). Der Pyropanteil liegt bei 12% bis 20% und der Spessartinanteil zwischen 3% und 5%.

Tabelle	Tabelle 4: Granatanalyse ML04-68								
	468gt1	468gt2	468gt3	468gt4	468gt5	468gt6	468gt7		
Mineral	grt	grt	grt	grt	grt	grt	grt		
SiO2	37,28	37,47	36,80	37,29	37,05	37,21	37,44		
AI2O3	21,28	21,01	20,80	20,83	20,74	21,13	20,96		
FeO	34,39	34,41	35,76	34,47	35,44	34,95	36,14		
MnO	1,60	1,35	1,83	1,74	2,27	1,64	2,08		
MgO	4,26	5,02	3,98	3,95	2,86	4,74	3,03		
CaO	1,32	1,19	0,98	1,16	1,20	1,16	1,20		
Total	100,13	100,45	100,15	99,44	99,56	100,83	100,85		
Si	2,975	2,971	2,951	3,005	3,006	2,946	2,997		
Al	2,002	1,963	1,966	1,978	1,983	1,972	1,978		
Fe3	0,048	0,096	0,131	0,012	0,005	0,136	0,028		
Fe2	2,247	2,186	2,267	2,312	2,400	2,178	2,392		
Mn	0,108	0,091	0,124	0,119	0,156	0,110	0,141		
Mg	0,507	0,593	0,476	0,475	0,346	0,559	0,362		
Са	0,113	0,101	0,084	0,100	0,104	0,098	0,103		
Sum	8,000	8,001	7,999	8,001	8,000	7,999	8,001		
Xmg	0,184	0,213	0,174	0,170	0,126	0,204	0,131		
Xalm	0,755	0,736	0,768	0,769	0,798	0,740	0,798		
Xsps	0,036	0,031	0,042	0,040	0,052	0,037	0,047		
Xpyr	0,170	0,200	0,161	0,158	0,115	0,190	0,121		
Xgrs	0,038	0,034	0,028	0,033	0,035	0,033	0,034		

Die Biotite sind ebenfalls eher eisenreich, haben Xmg Werte von 0,44 bis 0,47. Der TiO₂ Gehalt reicht bis zu 4,37 Gew.%, der F Gehalt bis 0,51 Gew.%, Cl konnte nicht detektiert werden. *(Tab. 5)*.

Tabelle	Tabelle 5: Biotitanalyse ML04-68							
	468bt1	468bt2	468bt3	468bt4	468bt5	468bt6		
Mineral	bt	bt	bt	bt	bt	bt		
SiO2	35,20	34,99	34,79	35,40	35,20	35,09		
TiO2	3,16	3,89	3,98	4,06	4,37	2,86		
AI2O3	18,19	16,90	17,23	17,48	17,58	17,94		
FeO	19,21	20,84	20,86	19,65	20,46	20,50		
MgO	9,63	8,95	9,14	9,45	8,90	9,61		
Na2O	<0.1	<0.1	<0.1	<0.1	0,12	<0.1		
K2O	9,40	9,50	9,39	9,51	9,47	9,37		
F	0,41	0,51	0,40	0,50	0,47	0,51		
Total	95,03	95,37	95,62	95,84	96,37	95,67		
Si	2,694	2,700	2,675	2,697	2,678	2,687		
Ti	0,182	0,226	0,230	0,233	0,250	0,165		
Al	1,641	1,537	1,561	1,569	1,576	1,619		
Fe2	1,230	1,345	1,341	1,252	1,302	1,313		
Mg	1,099	1,030	1,048	1,073	1,009	1,097		
Na	0,000	0,000	0,000	0,000	0,018	0,000		
K	0,918	0,935	0,921	0,924	0,919	0,915		
F	0,099	0,124	0,097	0,120	0,113	0,124		
Sum	7,863	7,897	7,873	7,868	7,865	7,920		
Xmg	0,472	0,434	0,439	0,462	0,437	0,455		

Die Plagioklase sind besonders Natrium reich mit einer Albitkomponente von 71 bis 73%. (Tab. 6).

Tabelle 6: Plagioklasanalyse ML04-68							
	468pg1	468pg2	468pg3	468pg4			
Mineral	plag	plag	plag	plag			
SiO2	61.88	62.29	63.15	62.05			
AI2O3	24.24	24.65	24.05	24.12			
Fe2O3	0.15	0.34	<0.1	<0.1			
CaO	5.51	5.66	5.19	5.52			
Na2O	8.43	8.25	8.44	8.36			
K2O	0.20	0.24	0.51	0.44			
Total	100.41	101.43	101.34	100.49			
Si	2.735	2.727	2.762	2.742			
Al	1.263	1.272	1.240	1.256			
Fe3	0.005	0.011	0.000	0.000			
Ca	0.261	0.265	0.243	0.261			
Na	0.722	0.700	0.716	0.716			
K	0.011	0.013	0.028	0.025			
Sum	4.997	4.988	4.989	5.000			
Xab	0.726	0.716	0.725	0.715			
Xan	0.263	0.271	0.246	0.260			
Xkfs	0.011	0.013	0.028	0.025			

4.2 Probe ML05-15

Die Messpunkte wurden im BSE Bild eingetragen (Anhang: Abb. 39).

Die Amphibole der Probe ML05-15 sind Magnesiohornblenden (Xmg 0,67 - 0,75). Alle haben auch eine geringe Menge Fluor, zwischen 0,20 und 0,32 Gew.%, eingebaut. Chlor ist in allen Analysen unter der Nachweisgrenze. *(Tab. 7)*.

Tabelle	7: Amp	hibolana	ılyse ML	.05-15	
	515am1	515am2	515am3	515am4	515am5
	magnesi	magnesi	magnesi	magnesi	magnesi
Mineral	ohb	ohb	ohb	ohb	ohb
SiO2	49,63	51,16	48,98	50,21	49,40
TiO2	1,42	1,10	1,27	1,08	1,42
AI2O3	6,82	5,85	6,86	6,16	7,29
FeO	15,82	11,98	12,28	12,33	12,42
MnO	0,41	0,27	0,21	0,27	0,22
MgO	15,26	15,95	15,16	15,67	14,96
CaO	8,47	11,65	11,43	11,53	11,49
Na2O	0,75	0,67	0,67	0,70	0,78
K2O	0,50	0,27	0,33	0,30	0,37
F	0,20	0,27	0,32	0,22	0,27
Total	99,20	99,06	97,38	98,38	98,51
Si	7,094	7,236	7,067	7,158	7,054
Ti	0,153	0,117	0,138	0,116	0,152
Al	1,149	0,975	1,167	1,035	1,227
Fe3	0,285	0,273	0,362	0,361	0,306
Fe2	1,606	1,144	1,120	1,110	1,177
Mn	0,050	0,032	0,026	0,033	0,027
Mg	3,252	3,363	3,261	3,331	3,185
Ca	1,297	1,765	1,767	1,761	1,758
Na	0,208	0,184	0,187	0,193	0,216
Κ	0,091	0,049	0,061	0,055	0,067
F	0,090	0,121	0,146	0,099	0,122
Sum	15,275	15,259	15,302	15,252	15,291
Xmg	0,669	0,746	0,744	0,750	0,730

Das Xmg von Biotit variiert zwischen 0,61 und 0,63 (*Tab. 8*). Die TiO₂ Werte reichen von 4,34 bis 4,67 Gew.%, die F Werte von 0,38 bis 0,48.

Tabelle 8: Biotitanalyse ML05-15						
	515bt1	515bt2	515bt3	515bt4	515bt5	
Mineral	bt	bt	bt	bt	bt	
SiO2	36,92	36,52	36,90	37,15	37,04	
TiO2	4,53	4,66	4,67	4,34	4,64	
AI2O3	14,34	14,02	14,28	14,37	14,18	
FeO	15,65	15,55	15,28	15,11	15,57	
MnO	<0.1	<0.1	0,11	<0.1	0,08	
MgO	14,15	13,82	13,80	14,45	13,58	
K2O	8,81	8,84	8,86	9,22	9,08	
F	0,43	0,38	0,48	0,43	0,46	
Total	94,65	93,63	94,18	94,89	94,44	
Si	2,785	2,788	2,796	2,793	2,805	
Ti	0,257	0,268	0,266	0,245	0,264	
Al	1,275	1,262	1,275	1,273	1,266	
Fe2	0,987	0,993	0,968	0,950	0,986	
Mn	0,000	0,000	0,007	0,000	0,005	
Mg	1,591	1,573	1,559	1,620	1,533	
K	0,848	0,861	0,857	0,884	0,877	
F	0,103	0,092	0,115	0,102	0,110	
Sum	7,846	7,837	7,843	7,867	7,846	
Xmg	0,617	0,613	0,617	0,630	0,609	

Die gemessenen Plagioklase sind Anorthit reich, 61% bis 77%. Teilweise haben sie sehr geringe Mengen an Fe³⁺ eingebaut (*Tab. 9*).

1000000	1 1 100	0			
	515pl1	515pl2	515pl3	515pl4	515pl5
Mineral	plag	plag	plag	plag	plag
SiO2	53,65	54,35	49,20	53,71	49,74
AI2O3	29,59	30,12	31,93	29,41	31,91
Fe2O3	<0.1	0,18	0,25	<0.1	<0.1
CaO	12,74	12,61	15,87	12,39	15,60
Na2O	4,12	4,21	2,65	4,33	2,63
K2O	<0.1	<0.1	<0.1	<0.1	<0.1
Total	100,10	101,47	99,90	99,84	99,88
Si	2,421	2,419	2,253	2,429	2,272
Al	1,574	1,580	1,723	1,568	1,718
Fe3	0,000	0,006	0,009	0,000	0,000
Са	0,616	0,601	0,779	0,600	0,763
Na	0,361	0,363	0,235	0,380	0,233
K	0,000	0,000	0,000	0,000	0,000
Sum	4,972	4,969	4,999	4,977	4,986
Xab	0,369	0,377	0,232	0,388	0,234
Xan	0,631	0,623	0,768	0,612	0,766

Tabelle 9: Plagioklasanalyse ML05-15

4.3 Probe ML05-16

Die Messpunkte wurden im BSE Bild eingetragen (Anhang: Abb. 40-42).

Die Plagioklase haben eine Albitkomponente von 75 bis 77%, die Kalifeldspäte haben etwa 15% Albitkomponente und bis zu 3.4% BaO eingebaut (Tab. 10). Messung kf3 ist eine perthitische Entmischung im Kalifeldspat von Messung kfl und kf2. Einige Kalifeldspäte zeigen BaO Gehalte bis 3.4% (Abb. 15).

Insent	IV. I club	putunuiyo		10		
	5163kf1	5163kf2	5163kf3	5163pg1	5163pg2	5163pg3
Mineral	kf	kf	akf	plag	plag	plag
SiO2	63,57	61,64	67,67	62,85	61,80	61,69
AI2O3	18,51	19,13	21,34	24,19	24,18	24,02
Fe2O3	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
CaO	<0.1	<0.1	1,58	4,89	4,96	4,87
BaO	1,86	3,40	<0.1	<0.1	<0.1	<0.1
Na2O	1,57	1,38	10,01	9,04	8,77	8,79
K2O	13,83	13,47	0,55	<0.1	0,23	<0.1
Total	99,34	99,02	101,15	100,97	99,94	99,37
Si	2,975	2,929	2,929	2,756	2,742	2,748
Al	1,021	1,071	1,089	1,250	1,264	1,261
Fe3	0,000	0,000	0,000	0,000	0,000	0,000
Ca	0,000	0,000	0,073	0,230	0,236	0,232
Ва	0,034	0,063	0,000	0,000	0,000	0,000
Na	0,142	0,127	0,840	0,768	0,754	0,759
Κ	0,826	0,817	0,030	0,000	0,013	0,000
Sum	4,998	5,007	4,961	5,004	5,009	5,000
Xab	0,142	0,126	0,891	0,770	0,752	0,766
Xan	0,000	0,000	0,077	0,230	0,235	0,234
Xkfs	0,824	0,811	0,032	0,000	0,013	0,000
Xcel	0,034	0,063	0,000	0,000	0,000	0,000

Tabelle 10: Feldspatanalyse ML05-16

Die gemessenen Sillimanite haben zu geringen Teilen Fe₂O₃ (0,18 bis 0,54 Gew.%) eingebaut (Tab. 11).

Tabelle 11: Sillimanitanalyse ML05-16						
	5162sl1	5162sl2	5162sl3	5163sl1		
Mineral	alsi	alsi	alsi	alsi		
SiO2	36,25	37,05	36,68	36,36		
AI2O3	64,06	64,49	64,48	62,81		
Fe2O3	0,18	0,59	0,41	0,20		
Total	100,49	102,13	101,57	99,37		
Si	0,975	0,981	0,976	0,988		
Al	2,030	2,013	2,023	2,012		
Fe3	0,004	0,012	0,008	0,004		
Sum	3,009	3,006	3,007	3,004		

T I II 11 C'II' '4 1 MT 07 16

Die Granate bestehen großteils aus Almandin (Xalm 0,816 bis 0,869) und zeigen keine signifikanten chemischen Unterschiede bei Messungen im Kern- und Randbereich und somit auch keine Zonierung (*Tab. 12*).

Tabelle	Tabelle 12: Granatanalyse ML05-16							
	5163gt1	5163gt2	5163gt3	5162gt1	5162gt2	5162gt3		
Mineral	grt	grt	grt	grt	grt	grt		
SiO2	36,42	36,95	36,21	36,99	36,68	36,31		
AI2O3	20,69	20,44	20,41	20,41	20,66	20,19		
FeO	38,68	38,85	38,35	37,91	38,81	39,07		
MnO	1,20	1,22	1,43	0,67	0,85	1,51		
MgO	2,41	2,46	2,32	3,00	2,60	1,83		
CaO	1,21	1,08	0,91	1,08	0,98	0,80		
Total	100,61	101,00	99,63	100,06	100,58	99,71		
Si	2,941	2,974	2,956	2,991	2,960	2,975		
Al	1,969	1,939	1,964	1,945	1,965	1,950		
Fe3	0,148	0,113	0,123	0,074	0,115	0,101		
Fe2	2,464	2,503	2,496	2,490	2,504	2,576		
Mn	0,082	0,083	0,099	0,046	0,058	0,105		
Mg	0,290	0,295	0,282	0,362	0,313	0,224		
Ca	0,105	0,093	0,080	0,094	0,085	0,070		
Sum	7,999	8,000	8,000	8,002	8,000	8,001		
Xmg	0,105	0,105	0,102	0,127	0,111	0,080		
Xalm	0,838	0,842	0,844	0,832	0,846	0,866		
Xsps	0,028	0,028	0,033	0,015	0,020	0,035		
Xpyr	0,099	0,099	0,095	0,121	0,106	0,075		
Xgrs	0,036	0,031	0,027	0,031	0,029	0,024		
5162gt4	5162gt5	5161gt1	5161gt2	5161gt3	5161gt4	5161gt5		
grt	grt	grt	grt	grt	grt	grt		
36,75	36,09	36,62	36,58	36,27	36,70	36,25		
20,47	20,21	20,82	20,32	20,49	20,32	20,12		
38,89	39,23	38,12	39,32	39,37	39,00	39,31		
1,25	0,91	0,58	1,03	1,05	0,74	1,19		
2,00	2,06	3,40	2,02	1,84	2,63	2,05		
1,16	0,98	1,10	0,86	0,88	0,95	0,85		
100,52	99,48	100,64	100,13	99,90	100,34	99,77		
2,979	2,958	2,936	2,980	2,963	2,971	2,965		
1,956	1,952	1,967	1,951	1,973	1,939	1,939		
0,086	0,132	0,160	0,090	0,101	0,120	0,131		
2,551	2,557	2,396	2,588	2,589	2,520	2,558		
0,086	0,063	0,039	0,071	0,073	0,051	0,082		
0,242	0,252	0,406	0,245	0,224	0,317	0,250		
0,101	0,086	0,094	0,075	0,077	0,082	0,074		
8,001	8,000	7,998	8,000	8,000	8,000	7,999		
0,087	0,090	0,145	0,086	0,080	0,112	0,089		
0.856	0,864	0,816	0.869	0.874	0.848	0,863		
0.029	0.021	0.013	0.024	0.025	0.017	0.028		
0.081	0.085	0,138	0.082	0.076	0.107	0,084		
0.034	0.029	0.032	0.025	0.026	0.028	0.025		

Die Biotite sind mit Xmg Werten von 0,286 bis 0,373 sehr eisenreich. TiO₂ Gehalte von bis zu 4,6 Gew.% und F Gehalte bis zu 1,03 Gew.%, sowie Na₂O bis 0,3 Gew.% wurden ebenfalls gemessen *(Tab.13)*.

Tabelle	Tabelle 13: Biotitanalyse ML05-16									
	5161bt1	5161bt2	5161bt3	5161bt4	5161bt5	5162bt2	5162bt1	5162bt3	5163bt1	5163bt2
Mineral	bt	bt	bt	bt	bt	bt	bt	bt	bt	bt
SiO2	34,27	34,19	34,60	34,36	34,39	34,96	35,00	33,90	34,49	34,27
TiO2	2,27	1,24	2,22	3,12	2,93	2,31	2,68	2,28	4,42	4,60
AI2O3	19,10	19,99	19,79	19,04	19,42	19,55	19,44	18,63	18,62	18,35
FeO	23,39	23,08	22,91	23,62	22,68	23,36	23,20	24,48	23,44	23,94
MgO	6,36	6,95	6,32	6,27	6,47	6,88	7,03	8,16	5,43	5,38
Na2O	0,14	0,27	0,30	0,26	0,24	0,24	0,24	0,14	<0.1	<0.1
K2O	9,01	8,85	8,89	9,01	9,14	9,23	9,11	8,51	9,33	9,42
F	0,88	0,84	0,80	0,79	0,72	0,84	0,82	1,03	0,73	0,72
Total	95,05	95,06	95,49	96,14	95,69	97,02	97,18	96,70	96,15	96,38
Si	2,680	2,664	2,679	2,658	2,660	2,673	2,668	2,619	2,668	2,656
Ti	0,134	0,073	0,129	0,182	0,170	0,133	0,154	0,132	0,257	0,268
Al	1,761	1,836	1,806	1,736	1,771	1,762	1,746	1,697	1,698	1,676
Fe2	1,530	1,504	1,483	1,528	1,467	1,494	1,479	1,582	1,516	1,551
Mg	0,742	0,807	0,730	0,723	0,746	0,784	0,799	0,940	0,626	0,622
Na	0,021	0,041	0,045	0,039	0,036	0,036	0,035	0,021	0,000	0,000
K	0,899	0,880	0,878	0,889	0,902	0,900	0,886	0,839	0,921	0,931
F	0,218	0,207	0,196	0,193	0,176	0,203	0,198	0,252	0,179	0,176
Sum	7,985	8,012	7,946	7,948	7,928	7,985	7,965	8,082	7,865	7,880
Xmg	0,327	0,349	0,330	0,321	0,337	0,344	0,351	0,373	0,292	0,286

Die Cordierite haben eine intermediäre Xmg Zusammensetzung mit 0.46 bis 0.51. Festgestellt wurden auch geringe Gehalte von Na₂O (bis 0,16 Gew. %) (*Tab. 14*).

Tabelle 14: Cordieritanalyse ML05-16							
	5161cd1	5161cd2	5161cd3	5161cd4	5162cd1	5162cd2	
Mineral	crd	crd	crd	crd	crd	crd	
SiO2	47,97	47,83	47,80	47,64	47,72	47,63	
AI2O3	32,60	32,49	32,46	32,33	32,49	32,13	
FeO	12,66	12,44	11,88	12,49	11,72	12,03	
MnO	0,17	0,12	0,14	<0.1	<0.1	<0.1	
MgO	6,04	6,19	6,27	6,08	6,72	6,18	
Na2O	0,12	0,11	0,10	0,16	0,15	0,16	
Total	99,56	99,18	98,65	98,70	98,80	98,13	
Si	4,979	4,978	4,988	4,983	4,970	4,999	
Al	3,988	3,986	3,992	3,985	3,988	3,975	
Fe2	1,099	1,083	1,037	1,092	1,021	1,056	
Mn	0,015	0,011	0,012	0,000	0,000	0,000	
Mg	0,935	0,960	0,975	0,948	1,043	0,967	
Na	0,024	0,022	0,020	0,032	0,030	0,033	
Sum	11,040	11,040	11,024	11,040	11,052	11,030	
Xmg	0,460	0,470	0,485	0,465	0,505	0,478	

4.4 Probe ML07-1B

Die Messpunkte wurden im BSE Bild eingetragen (Anhang: Abb. 43-45).

Mit Xmg zwischen 0,559 und 0,637 liegen die Cordierite von ML07-1B auf der Seite des Magnesiums. Weiters haben sie MnO (bis 0,19 bis 0,45 Gew.%) und Na₂O (bis 0,18 Gew. %) eingebaut (*Tab 15*).

Tabelle	Tabelle 15: Cordieritanalyse ML07-1B							
	71B1cd1	71B1cd2	71B1cd3	71B1cd4	71B1cd5			
Mineral	crd	crd	crd	crd	crd			
SiO2	48,57	48,99	48,86	48,77	49,36			
AI2O3	33,36	33,18	33,15	33,03	33,58			
FeO	10,40	10,10	9,38	10,06	10,28			
MnO	0,30	0,43	0,43	0,43	0,45			
MgO	7,40	7,64	7,80	7,32	7,42			
Na2O	0,12	0,14	<0.1	0,16	0,10			
Total	100,15	100,48	99,62	99,77	101,19			
Si	4,961	4,983	4,992	4,994	4,985			
Al	4,016	3,977	3,992	3,986	3,997			
Fe2	0,888	0,859	0,802	0,862	0,868			
Mn	0,026	0,037	0,037	0,037	0,038			
Mg	1,127	1,158	1,188	1,117	1,117			
Na	0,024	0,028	0,000	0,032	0,020			
Sum	11,042	11,042	11,011	11,028	11,025			
Xmg	0,559	0,574	0,597	0,564	0,563			
71B1cd6	71B2cd1	71B2cd2	71B2cd3	71B2cd4	71B2cd5			
crd	crd	crd	crd	crd	crd			
49,07	48,76	48,32	48,27	48,19	48,66			
33,14	33,18	32,84	32,24	32,86	32,71			
10,02	9,50	9,28	9,52	9,68	8,74			
0,63	0,20	0,19	0,36	0,34	0,29			
7,32	8,15	7,90	7,71	7,65	8,60			
0,00	0,00	0,13	0,18	0,14	0,12			
100,18	99,79	98,66	98,28	98,86	99,12			
5,003	4,974	4,984	5,009	4,974	4,987			
3,982	3,989	3,992	3,943	3,997	3,951			
0,854	0,811	0,800	0,826	0,836	0,749			
0,054	0,017	0,017	0.032	0.030	0,025			
1,113	1,239	1.215	1.193	1.177	1,314			
0,000	0,000	0,026	0,036	0,028	0,024			
11,006	11,030	11,034	11,039	11,042	11,050			
0,566	0,604	0,603	0,591	0,585	0,637			

Die Biotite sind eisenreich (Xmg 0,389 bis 0,434). Der TiO2 Gehalt beträgt 2,82 bis 4,18 Gew.%, zu geringen Teilen wurdeauch Na₂O (bis 0,21 Gew.%) gemessen *(Tab. 16)*.

Tabelle 16: Biotitanalyse ML07-1B							
	71B1bt1	71B1bt2	71B1bt3	71B1bt4	71B1bt5		
Mineral	bt	bt	bt	bt	bt		
SiO2	35,03	34,85	35,23	34,92	34,73		
TiO2	3,79	3,07	2,82	3,38	3,99		
AI2O3	19,29	18,95	19,22	18,84	18,26		
FeO	21,00	20,61	21,00	20,98	21,38		
MnO	0,06	0,20	0,23	0,13	0,11		
MgO	7,50	8,08	8,64	8,42	7,89		
Na2O	0,21	0,19	0,16	0,10	0,16		
K2O	9,28	9,22	9,48	9,33	9,27		
Total	96,16	95,17	96,78	96,20	95,79		
Si	2.661	2.675	2.663	2.657	2.661		
Ti	0.217	0.177	0.160	0.193	0.230		
Al	1.727	1.714	1.712	1.689	1.649		
Fe2	1.334	1.323	1.328	1.335	1.370		
Mn	0.004	0.013	0.015	0.008	0.007		
Mg	0.850	0.924	0.974	0.955	0.901		
Na	0.031	0.028	0.023	0.015	0.024		
K	0.900	0.903	0.914	0.906	0.906		
Sum	7.724	7.757	7.789	7.758	7.748		
Xmg	0.389	0.411	0.423	0.417	0.397		
71B1bt6	71B2bt1	71B2bt2	71B2bt3	71B2bt4	71B2bt5		
bt	bt	bt	bt	bt	bt		
34,16	35,19	34,87	35,22	35,26	34,51		
4,03	3,41	3,40	3,40	4,05	4,18		
18,86	19,27	18,85	18,50	18,84	18,83		
20,40	20,63	20,30	20,95	20,90	20,64		
0,16	0,18	0,14	0,14	0,20	0,24		
7,65	8,88	8,70	8,48	8,45	7,57		
0,14	0,16	0,17	0,17	0,10	0,16		
9,15	9,30	9,24	9,15	9,55	9,44		
94,55	97,02	95,67	96,01	97,35	95,57		
2.641	2.646	2.658	2.680	2.650	2.645		
0.234	0.193	0.195	0.195	0.229	0.241		
1.718	1.708	1.694	1.659	1.669	1.701		
1.319	1.297	1.294	1.333	1.314	1.323		
0.010	0.011	0.009	0.009	0.013	0.016		
0.882	0.995	0.989	0.962	0.947	0.865		
0.021	0.023	0.025	0.025	0.015	0.024		
0.902	0.892	0.899	0.888	0.916	0.923		
7.727	7.765	7.763	7.751	7.753	7.738		
0.401	0.434	0.433	0.419	0.419	0.395		

Die Granate haben eine Almandinkomponente von ~75% und Pyrop- und Spessartinkomponenten von 10-12%. Messungen von Kern und Rand zeigten keine aussagekräftigen Unterschiede. Bei allen wurden auch geringe Mengen an dreiwertigem Eisen rechnerisch festgestellt (*Tab. 17*).

Tabelle 17: Granatanalyse ML07-1B								
	71B1gt1	71B1gt2	71B1gt3	71B1gt4	71B1gt5	71B1gt6		
Mineral	grt	grt	grt	grt	grt	grt		
SiO2	37,27	36,97	36,96	36,83	36,64	36,46		
AI2O3	21,15	21,11	20,71	21,40	20,98	20,50		
FeO	35,69	35,82	36,06	35,86	35,31	34,66		
MnO	4,31	4,12	4,15	4,85	5,08	4,57		
MgO	3,16	3,02	3,01	2,89	2,42	2,89		
CaO	0,95	0,91	0,93	0,89	0,92	0,88		
Total	102,53	101,95	101,82	102,72	101,35	99,96		
Si	2,940	2,935	2,941	2,905	2,937	2,954		
Al	1,966	1,975	1,942	1,990	1,982	1,958		
Fe3	0,154	0,155	0,175	0,200	0,143	0,134		
Fe2	2,200	2,223	2,225	2,166	2,224	2,215		
Mn	0,288	0,277	0,280	0,324	0,345	0,314		
Mg	0,372	0,357	0,357	0,340	0,289	0,349		
Са	0,080	0,077	0,079	0,075	0,079	0,076		
Sum	8,000	7,999	7,999	8,000	7,999	8,000		
Xmg	0,145	0,138	0,138	0,136	0,115	0,136		
Xalm	0,748	0,758	0,757	0,746	0,757	0,750		
Xsps	0,098	0,094	0,095	0,112	0,117	0,106		
Xpyr	0,127	0,122	0,121	0,117	0,098	0,118		
Xgrs	0,027	0,026	0,027	0,026	0,027	0,026		

Die Plagioklase sind besonders Natrium reich ~70%, der Kalium Anteil ist nur sehr gering (bis 0,35 Gew.%) (*Tab. 18*).

Tabelle	Tabelle 18: Plagioklasanalyse Ml07-1B									
	71B1pl1	71B1pl2	71B1pl3	71B1pl4	71B1pl5	71B1pl6	71B2pl2	71B2pl3	71B2pl4	
Mineral	plag	plag	plag	plag	plag	plag	plag	plag	plag	
SiO2	62,42	62,81	62,80	62,54	61,92	61,78	62,34	63,23	63,34	
AI2O3	24,62	24,54	24,29	24,02	24,36	24,47	24,59	24,45	24,69	
CaO	5,93	5,64	5,36	5,20	5,67	5,75	5,74	5,40	5,40	
Na2O	8,01	8,18	8,22	8,40	7,76	8,18	7,90	8,09	8,24	
K2O	0,35	0,17	0,16	0,22	0,36	0,14	0,27	<0.1	0,10	
Total	101,33	101,34	100,83	100,38	100,20	100,32	100,97	101,17	102,07	
Si	2,733	2,745	2,755	2,758	2,738	2,731	2,736	2,759	2,746	
Al	1,271	1,264	1,256	1,248	1,269	1,275	1,272	1,258	1,261	
Ca	0,278	0,264	0,252	0,246	0,269	0,272	0,270	0,252	0,251	
Na	0,680	0,693	0,699	0,718	0,665	0,701	0,672	0,685	0,693	
K	0,020	0,009	0,009	0,012	0,020	0,008	0,015	0,000	0,006	
Sum	4,982	4,975	4,971	4,982	4,961	4,987	4,965	4,954	4,957	_
Xab	0,695	0,717	0,728	0,736	0,697	0,715	0,702	0,731	0,729	
Xan	0,284	0,273	0,263	0,252	0,282	0,277	0,282	0,269	0,264	
Xkfs	0,020	0,009	0,009	0,012	0,021	0,008	0,016	0,000	0,006	

4.5 Probe ML09-16

Die Messpunkte wurden im BSE Bild eingetragen (Anhang: Abb. 46).

Die gemessenen Amphibole sind Magnesiohornblenden (Xmg bis 0,769). Geringe Gehalte an Cr_2O_3 (bis 0,32 Gew.%), TiO2 (bis 1,15 Gew.%) und F (bis 0,54 Gew.%) wurden ebenfalls festgestellt (*Tab. 19*).

Tabelle	19: Amp	hibolan	alyse Ml	209-16
	916am1	916am2	916am3	916am4
	magnesi	magnesi	i magnesi	magnesi
Mineral	ohb	ohb	ohb	ohb
SiO2	50,92	50,67	53,64	51,72
TiO2	1,15	1,14	0,57	0,96
AI2O3	5,32	5,80	3,29	4,62
Cr2O3	0,32	0,22	0,12	0,19
FeO	10,75	10,46	10,45	10,86
MnO	0,16	0,21	0,13	0,26
MgO	16,60	16,70	18,09	16,91
CaO	11,52	11,43	11,75	11,58
Na2O	0,45	0,51	0,27	0,38
K2O	0,46	0,42	0,25	0,27
F	0,43	0,54	0,51	0,48
Total	97,90	97,87	98,86	98,03
S i	7 276	7 222	7 540	7 366
ы ті	0 124	0 122	0.060	0 102
	0,124	0,122	0,000	0,103
Ai Cr	0,090	0,970	0,040	0,775
CI Eo2	0,030	0,025	0,013	0,021
FeJ Eo2	1 000	1 024	1 022	1 077
Mo	0.010	0.025	0.015	0.021
Ma	0,019	0,025	2 701	2,001
iviy Co	3,000	3,000	3,791	3,590
Ca	1,704	1,740	1,770	1,707
ina	0,125	0,141	0,074	0,105
n F	0,084	0,076	0,045	0,049
	0,194	0,244	0,227	0,216
Sum	15,339	15,391	15,309	15,316
Xmg	0,763	0,775	0,786	0,769

Die Biotite haben Xmg Werte von 0,561 bis 0,676. Ebenfalls gemessenen wurden Cr_2O_3 (bis 0,35 Gew.%), F (bis 0,86 Gew.%) und Cl (bis 0,15 Gew.%) (*Tab. 20*).

Tabelle	Tabelle 20: Biotitanalyse ML09-16							
	916bt1	916bt2	916bt3	916bt4				
Mineral	bt	bt	bt	bt				
SiO2	37,87	35,95	37,82	37,93				
TiO2	4,96	4,40	4,61	4,99				
AI2O3	13,76	13,82	14,02	13,94				
Cr2O3	0,26	0,28	0,35	0,28				
FeO	13,32	17,84	13,72	13,63				
MnO	0,11	0,13	<0.1	<0.1				
MgO	15,55	12,79	15,91	14,89				
Na2O	0,11	0,10	0,10	0,12				
K2O	8,98	8,23	9,30	9,22				
F	0,81	0,55	0,85	0,86				
Cl	0,00	0,12	0,11	0,15				
Total	95,39	93,95	96,41	95,61				
Si	2,813	2,771	2,792	2,820				
Ti	0,277	0,255	0,256	0,279				
Al	1,205	1,255	1,220	1,222				
Cr	0,015	0,017	0,020	0,016				
Fe2	0,827	1,150	0,847	0,848				
Mn	0,007	0,008	0,000	0,000				
Mg	1,722	1,470	1,751	1,651				
Na	0,016	0,015	0,014	0,017				
K	0,851	0,809	0,876	0,875				
F	0,190	0,134	0,198	0,202				
Cl	0,000	0,016	0,014	0,019				
Sum	7,923	7,900	7,988	7,949				
Xmg	0,676	0,561	0,674	0,661				

Sowohl die Orthopyroxene (Xmg bis 0,628) als auch die Clinopyroxene (Xmg bis 0,757) haben hohe Magnesiumgehalte. Der Unterschied der Pyroxene wird vor allem am erhöhten Calcium Gehalt der Cpx deutlich, weiters haben sie geringe Anteile an Na₂O (*Tab. 21*).

Tabelle 21: Pyroxenanalyse ML09-16							
	916px1	916px2	916px3	916px4	916px5	916px6	
Mineral	орх	орх	орх	орх	срх	срх	
SiO2	52,65	52,87	52,54	52,45	52,92	52,40	
TiO2	0,16	<0.1	0,18	0,15	0,26	0,27	
AI2O3	0,54	0,52	0,58	0,55	0,81	0,69	
FeO	23,76	24,65	25,38	24,33	8,13	8,63	
MnO	0,59	0,64	0,72	0,69	0,24	0,33	
MgO	21,60	21,01	20,21	21,06	14,24	14,17	
CaO	0,93	0,91	0,83	0,69	22,29	22,16	
Na2O	<0.1	<0.1	<0.1	<0.1	0,15	0,12	
Total	100,23	100,60	100,44	99,92	99,04	98,77	
Si	1,969	1,978	1,979	1,974	1,985	1,977	
Ti	0,004	0,000	0,005	0,004	0,007	0,008	
Al	0,024	0,023	0,026	0,024	0,036	0,031	
Fe3	0,030	0,022	0,007	0,019	0,000	0,009	
Fe2	0,713	0,749	0,793	0,747	0,255	0,264	
Mn	0,019	0,020	0,023	0,022	0,008	0,011	
Mg	1,204	1,172	1,135	1,182	0,796	0,797	
Ca	0,037	0,036	0,033	0,028	0,896	0,896	
Na	0,000	0,000	0,000	0,000	0,011	0,009	
Sum	4,000	4,000	4,001	4,000	3,994	4,002	
Xmg	0,628	0,610	0,589	0,613	0,757	0,751	

Die Plagioklase haben eine Anorthitkomponente von ~88%. Minimal wird auch Magnesium und dreiwertiges Eisen eingebaut (*Tab. 22*).

Tabelle 22: Plagioklasanalyse ML09-16							
	916pl1	916pl2	916pl3	916pl4	916pl5		
Mineral	plag	plag	plag	plag	plag		
SiO2	46,19	45,93	45,77	46,05	45,95		
AI2O3	33,46	34,24	34,42	33,79	33,82		
Fe2O3	<0.1	0,20	<0.1	<0.1	<0.1		
MgO	<0.1	<0.1	0,17	<0.1	<0.1		
CaO	17,83	18,05	17,80	17,78	17,81		
Na2O	1,23	1,31	1,32	1,37	1,46		
Total	98,71	99,73	99,48	98,99	99,04		
Si	2,151	2,121	2,117	2,139	2,135		
Al	1,836	1,864	1,876	1,850	1,852		
Mg	0,000	0,000	0,012	0,000	0,000		
Ca	0,889	0,893	0,882	0,885	0,887		
Na	0,111	0,117	0,118	0,123	0,132		
Sum	4,987	4,995	5,005	4,997	5,006		
Xab	0,111	0,116	0,118	0,122	0,130		
Xan	0,889	0,884	0,882	0,878	0,870		

4.6 Probe BA7

Die Messpunkte wurden im BSE Bild eingetragen (Anhang: Abb. 47-48).

Die Biotite der Probe BA7 haben ein ausgeglichenes Verhältnis von Magnesium und Eisen. Sie enthalten ebenfalls geringe Gehalte an BaO (bis 0,34 Gew.%), Na₂O (bis 0,28 Gew.%) und F (bis 0,52 Gew.%) (*Tab. 23*).

Tabelle 23: Biotitanalyse BA7							
	BA71bt1	BA71bt2	BA72bt1	BA72bt2			
Mineral	bt	bt	bt	bt			
SiO2	36,27	36,72	36,62	36,33			
TiO2	4,87	4,22	3,32	3,69			
AI2O3	15,88	16,05	16,08	15,83			
FeO	19,18	17,97	18,92	18,35			
MnO	<0.1	<0.1	0,10	<0.1			
MgO	10,27	11,22	11,21	11,59			
BaO	0,22	0,20	0,34	<0.1			
Na2O	0,10	<0.1	0,28	0,15			
K2O	9,82	9,67	8,83	9,26			
F	0,42	0,50	0,52	0,41			
Total	96,85	96,34	96,00	95,44			
Si	2,738	2,763	2,772	2,759			
Ti	0,276	0,239	0,189	0,211			
Al	1,413	1,424	1,435	1,417			
Fe2	1,211	1,131	1,198	1,165			
Mn	0,000	0,000	0,006	0,000			
Mg	1,156	1,259	1,265	1,312			
Ba	0,007	0,006	0,010	0,000			
Na	0,015	0,000	0,041	0,022			
K	0,946	0,928	0,853	0,897			
F	0,100	0,119	0,124	0,098			
Sum	7,862	7,869	7,893	7,881			
Xmg	0,488	0,527	0,514	0,530			

Die Granate haben eine Almandinkomponente von 66% bis 70% und eine Pyropkomponente von 18% bis 20%. Die Messungen BA71gt1 (Kern) und BA71gt2 (Rand) zeigen eine sehr kleine Zonierung an (*Tab. 24*).

Tabelle 24: Granatanalyse BA7				
	BA71gt1	BA71gt2	BA72gt1	BA72gt2
Mineral	grt	grt	grt	grt
SiO2	37,79	38,19	37,73	37,59
AI2O3	20,51	20,78	21,03	20,45
Fe2O3	<0.1	<0.1	<0.1	<0.1
FeO	31,13	32,11	32,04	32,61
MnO	2,39	2,58	2,40	2,28
MgO	5,02	4,49	4,61	4,49
CaO	3,11	2,63	2,38	2,42
Total	99,95	100,78	100,19	99,84
Si	2,998	3,018	2,995	3,002
Al	1,918	1,935	1,968	1,925
Fe3	0,086	0,028	0,041	0,072
Fe2	1,979	2,094	2,086	2,106
Mn	0,161	0,173	0,161	0,154
Mg	0,594	0,529	0,546	0,535
Ca	0,264	0,223	0,202	0,207
Sum	8,000	8,000	7,999	8,001
Xmg	0,231	0,202	0,207	0,203
Xalm	0,660	0,694	0,696	0,702
Xsps	0,054	0,057	0,054	0,051
Xpyr	0,198	0,175	0,182	0,178
Xgrs	0,088	0,074	0,067	0,069

Das Eisen-Magnesium Verhältnis der Orthopyroxene liegt nur knapp auf Seiten des Magnesiums (Xmg 0,523 bis 0,533). Einige haben geringe Mengen an TiO₂ (bis 0,16 Gew.%) und Na₂O (bis 0,16 Gew.%) (*Tab. 25*).

Tabelle	Tabelle 25: Orthopyroxenanalyse BA7					
	BA71op1	BA71op2	BA71op3	BA72op1	BA72op2	BA72op3
Mineral	орх	орх	орх	орх	орх	орх
SiO2	54,08	54,36	52,97	54,01	53,24	54,00
TiO2	<0.1	0,13	<0.1	0,16	0,15	0,12
AI2O3	1,31	1,89	1,71	1,43	1,78	1,63
FeO	26,26	25,42	25,80	25,94	26,04	26,44
MnO	0,47	0,59	0,54	0,49	0,50	0,40
MgO	16,34	16,15	15,87	16,63	16,25	16,27
CaO	0,28	0,25	0,21	0,22	0,26	0,22
Na2O	<0.1	0,16	<0.1	<0.1	0,15	<0.1
Total	98,74	98,95	97,10	98,88	98,37	99,08
Si	2,060	2,058	2,052	2,052	2,039	2,051
Ti	0,000	0,004	0,000	0,005	0,004	0,003
Al	0,059	0,084	0,078	0,064	0,080	0,073
Fe2	0,837	0,805	0,836	0,824	0,834	0,840
Mn	0,015	0,019	0,018	0,016	0,016	0,013
Mg	0,928	0,911	0,917	0,942	0,928	0,921
Ca	0,011	0,010	0,009	0,009	0,011	0,009
Na	0,000	0,012	0,000	0,000	0,011	0,000
Sum	3,910	3,903	3,910	3,912	3,923	3,910
Xmg	0,526	0,531	0,523	0,533	0,527	0,523

Der Plagioklas bei Messung BA71pg1 und pg2 ist eher anorthitreich, wohingegen bei BA72pl1 und pl2 etwas mehr Albit vorhanden ist *(Tab. 26)*.

Tabelle 26: Plagioklasanalvse BA7				
	BA71pl1	BA71pl2	BA72pl1	BA72pl2
Mineral	plag	plag	plag	plag
SiO2	56,32	56,04	57,22	57,45
AI2O3	28,59	28,96	27,98	27,73
CaO	11,26	11,30	10,51	10,38
Na2O	5,59	5,43	6,07	6,23
Total	101,76	101,73	101,78	101,79
Si	2,494	2,482	2,528	2,538
Al	1,492	1,512	1,457	1,444
Ca	0,534	0,536	0,498	0,491
Na	0,480	0,466	0,520	0,534
Sum	5,000	4,996	5,003	5,007
Xab	0,473	0,465	0,511	0,521
Xan	0,527	0,535	0,489	0,479

4.7 Probe BA10

Die Messpunkte wurden im BSE Bild eingetragen (Anhang: Abb. 49-50).

Die Granate sind besonders eisenreich und zeigen eine leichte Zonierung und einen Anstieg des Eisengehalts von knapp 5% vom Kern zum Rand (*Tab. 27*).

Tabelle 27: Granatanalyse BA10				
	BA101g1	BA101g2	BA101g3	
Mineral	grt	grt	grt	
SiO2	37,83	37,24	37,33	
AI2O3	21,11	20,34	20,62	
FeO	36,83	37,91	36,77	
MnO	0,89	0,99	0,75	
MgO	3,89	2,53	3,70	
CaO	1,11	1,07	1,23	
Total	101,66	100,08	100,40	
Si	2,989	3,019	2,991	
Al	1,966	1,944	1,947	
Fe3	0,056	0,018	0,071	
Fe2	2,377	2,553	2,392	
Mn	0,060	0,068	0,051	
Mg	0,458	0,306	0,442	
Са	0,094	0,093	0,106	
Sum	8,000	8,001	8,000	
Xmg	0,162	0,107	0,156	
Xalm	0,795	0,845	0,800	
Xsps	0,020	0,023	0,017	
Xpyr	0,153	0,101	0,148	
Xgrs	0,031	0,031	0,035	

Probe BA10 enthält im Gegensatz zu den anderen Proben fast ausschließlich Kalifeldspat, jedoch mit einem Albitanteil von bis zu 22,7% und sehr geringe Mengen an Calcium. 0,39 bis 0,57 Gew.% an BaO wurden ebenfalls gemessen (*Tab. 28*).

Tabelle 28: Kalifeldspatanalyse BA10				
	BA101k1	BA101k2	BA101k3	BA102k1
Mineral	kf	kf	kf	kf
SiO2	66,18	66,16	66,28	66,38
AI2O3	18,62	18,86	18,58	19,34
MgO	0,14	0,11	<0.1	<0.1
CaO	0,13	0,18	<0.1	<0.1
BaO	0,57	0,76	0,72	0,39
Na2O	2,30	1,57	2,29	2,57
K2O	13,58	14,22	13,82	13,31
Total	101,52	101,86	101,69	101,99
Si	2,996	2,992	3,000	2,982
Al	0,993	1,005	0,991	1,024
Mg	0,009	0,007	0,000	0,000
Ca	0,006	0,009	0,000	0,000
Ba	0,010	0,013	0,013	0,007
Na	0,202	0,138	0,201	0,224
K	0,784	0,820	0,798	0,763
Sum				
Xab	0,204	0,143	0,201	0,227
Xan	0,006	0,009	0,000	0,000
Xkfs	0,790	0,848	0,799	0,773

Die Biotite haben einen Xmg Wert zwischen 0,359 und 0,453. 1,36 bis 3,01 Gew.% TiO₂ und geringe Mengen an Na₂O (0,15 bis 0,2 Gew.%) sind ebenso enthalten (*Tab. 29*).

Tabelle 29: Biotitanalyse BA10				
	BA101b1	BA101b2	BA102b1	
Mineral	bt	bt	bt	
SiO2	34,79	34,10	35,25	
TiO2	2,36	3,01	1,36	
AI2O3	19,83	19,24	20,68	
FeO	21,31	22,07	19,73	
MgO	6,71	6,80	9,18	
Na2O	0,20	0,17	0,15	
K2O	9,37	9,35	9,24	
Total	94,57	94,74	95,59	
Si	2,692	2,652	2,668	
Ti	0,137	0,176	0,077	
Al	1,808	1,763	1,845	
Fe2	1,379	1,435	1,249	
Mg	0,774	0,788	1,036	
Na	0,030	0,026	0,022	
K	0,925	0,928	0,892	
Sum	7,745	7,768	7,789	
Xmg	0,359	0,354	0,453	

Ein ausgeglichenes Eisen-Magnesium Verhältnis und geringe Mengen an Na₂O (bis 0,16 Gew.%) zeichnen die Cordierite aus. Eine Messung zeigt zusätzlich noch einen Einbau von 0,13 Gew.% MnO *(Tab. 30)*.

Tabelle 30: Cordieritanalyse BA10				
	BA101c1	BA101c2	BA101c3	
Mineral	crd	crd	crd	
SiO2	48,62	48,63	49,10	
AI2O3	32,30	31,97	32,32	
FeO	11,62	11,85	11,70	
MnO	0,13	<0.1	<0.1	
MgO	6,84	6,45	6,76	
Na2O	0,13	0,14	0,16	
Total	99,64	99,04	100,04	
Si	5,015	5,047	5,040	
Al	3,927	3,910	3,910	
Fe2	1,002	1,029	1,004	
Mn	0,011	0,000	0,000	
Mg	1,052	0,998	1,034	
Na	0,026	0,028	0,032	
Sum	11,033	11,012	11,020	
Xmg	0,512	0,492	0,507	

4.7.1 Granatprofil

Durch den größten Granat der Probe BA10 (*Abb. 31*) wurde ein Profil gelegt um eine mögliche Zonierung festzustellen. Wie alle Granate hat er einen hohen Almandin Gehalt von 78% bis 85% mit einem Anstieg vom Kern zum Rand und einem gleichzeitigen Abfall von Magnesium. Die Grossular und Spessartin Komponente ist mit jeweils 1% bis 3% ebenfalls wie bei den übrigen Messungen sehr gering.

Der Plot der vier Endglieder (*Abb. 33*) zeigt, dass es sich eigentlich um zwei Granatkörner handelt, welche verwachsen sind und beide zeigen eine leichte Zonierung. Jeweils zum Rand hin nimmt der Almandin Anteil zu (um etwa 7%) während der Pyrop Anteil um den selben Betrag abnimmt. Grossular und Spessartin bleiben über das ganze Profil hinweg ca. konstant niedrig.

Abbildung 33: Granatprofil Plot1

Bei genauerer Betrachtung der Calcium und Mangan Endglieder, ist ebenfalls eine leichte Zonierung erkennbar (*Abb. 34*). Spessartin nimmt ähnlich der Eisenkomponente im Randbereich zu (um etwa 2%) während der Grossularanteil im Kernbereich höher ist.

Abbildung 34: Granatprofil Plot2

5 Geothermobarometrie

Die Methoden der Geothermobarometrie versuchen die Bildungsbedingungen metamorpher Gesteine zu rekonstruieren. Sie beruht auf Mineralreaktionen wie Kationenaustausch oder Mineralneubildung. Die beobachteten Mineralphasen stehen nur unter bestimmten Druck- und Temperaturbedingungen im chemischen Gleichgewicht, dadurch können anhand der chemischen Analysen Rückschlüsse auf diese gezogen werden.

Von zwei der analysierten Proben wurden im Programm PET (Dachs, 2004) Druck-Temperatur-Plots angefertigt, wobei verschiedene Thermometer verwendet wurden:

Probe ML09-16:	Cpx-Opx Solvus Thermometer (Brey & Köhler, 1990)
	Opx-Bt Thermometer (Sengupta et al, 1990)
Probe ML07-1B:	Grt-Bt Thermometer (Holdaway, 2000)
	Grt-Bt-Plg Thermometer (Hoisch, 1990)

Weiters wurde bei Probe BA7 das Programm winTWQ Version 2.34 (*Berman, 1991*) genutzt um PT Bedingungen abzuleiten. Die Minerale Granat, Biotit, Plagioklas, Quartz und Orthopyroxen wurden dabei für die Berechnung herangezogen. Verwendet wurden dazu die thermodynamischen Aktivitätswerte der programmeigenen Mineraldatenbank (*Berman and Aranovich, 1996*).

Der Temperaturbereich der Probe ML09-16 liegt zwischen 770 und 800 °C (Abb. 35).

Probe ML07-1B zeigt Temperaturen zwischen 600 und 700 °C und einen Druck von 3-5 kbar (*Abb. 36*).

Abbildung 36: PT-Plot ML07-1B

Bei Probe BA7 wurden drei Gleichgeweichtsreaktionen geplottet, eine Überschneidung der Linien zeigt eine Temperatur von etwa 770°C und einen Druck von Rund 6 kbar (*Abb. 37*). Die verwendeten Reaktionen sind:

 $2 \operatorname{Ann} + \operatorname{Grs} + 2\operatorname{Pyr} + 3\operatorname{Qtz} = 2\operatorname{Phl} + 6\operatorname{Fsl} + 3\operatorname{An}$

 $2 \operatorname{Alm} + \operatorname{Grs} + 3 \operatorname{Qtz} = 6 \operatorname{Fsl} + 3 \operatorname{An}$

Alm + Phl = Pyr + Ann

Abbildung 37: PT-Plot BA7

6 Diskussion und Zusammenfassung

In dieser Arbeit wurden granulitfazielle Metmorphite aus der Bavarischen Einheit der Böhmischen Masse behandelt. Ziel war es die Proben petrographisch genau zu beschreiben, Mineraltexturen zu dokumentieren und die chemische Zusammensetzung der Minerale zu bestimmen. Aus den chemischen Mineralanalysen wurden exemplarisch an 3 Proben Metamorphosebedingungen abgeleitet.

Die vorkommenden Gesteine sind migmatische Gneise, Cordierit-Granat-Granulite, mafische Granulite und Amphibolite. Es handelt sich vorallem um metasedimentäre Einheiten, welche bei hoher Temperatur (~770°C und 5-6 kbar) metamorph überprägt und zum Teil stark aufgeschmolzen wurden.

Die Granate zeigen im allgemeinen eine Almandin reiche Zusammensetzung (Xalm ~0,80). Der Granatzonarbau zeigt ein einphasiges Wachstum an, eine leichte Almandin Zunahme und Pyrop Abnahme im Randbereich ist typisch für eine retrograde Diffusionszonierung während der Abkühlung.

Cordierit ist weit verbreitet und konnte in vielen der Proben beobachtet werden, er kommt gemeinsam mit Biotit, Sillimanit und Granat vor, wobei der Cordierit auf Kosten des Granats wächst. Eine mögliche Reaktion hierfür wäre:

Grt + Sil + Qtz = Crd (1)

7 Literatur

[1] (Linner, Mandl und Rupp, 2011);

Christian Rupp, Manfred Linner & Gerhard W. Mandl (Redaktion, 2011, "Erläuterungen, geologische Karte von Oberösterreich 1:200 000"

[2] (F.K.Bauer, 1980);

Der geologische Aufbau Österreichs, 1980, hrsg. Von der Geologischen Bundesanstalt, Beitr. Von F.K.Bauer

[3] *(Weblink);*

http://www.biowin.at/all/Geologie/geoloe/boehm/boehm02.htm

[4] *(Weblink);*

http://www.geologie.ac.at/RockyAustria/boehmische_masse.htm

[5] (Dachs, 1998);

Edgar Dachs (1998): PET: Petrological elementary tools for Mathematica. Computers & Geosciences 24/3:219-235

[6] *(Holdaway, 2000);*

M.J. Holdaway, 2000, "Application of new experimental and garnet Margules data to the garnet–biotite geothermometer" American Mineralogist 85, 881–892.

[7] (Hoisch, 1990);

T.D. Hoisch, 1990, "Empirical calibration of six geobarometers for the mineral assemblage quartz + muscovite + biotite + plagioclase + garnet. Contributions to Mineralogy and Petrology 104, 225–234.

[8] (Berman, 1991);

R. G. Berman, 1991, "Thermobarometry using multi-equilibrium calculations : a new technique, with petrological applications", Canadian Mineralogist, v. 29, p. 833–855.

[9] (Berman and Aranovich, 1996);

R.G. Berman, L.Y. Aranovich (1996) "Optimized standard state and mixing properties of minerals: I. Model calibration for olivine, orthopyroxene, cordierite, garnet, and ilmenite in the system $FeO - MgO - CaO - Al_2O_3 - SiO_2 - TiO_2$ ", Contributions to Mineralogy and Petrology 126: 1–24

8 Anhang

Abbildung 38: Messpunkte ML04-68. Maßstabbalken: 2mm.

Abbildung 39: Messpunkte ML05-15. Maßstabbalken: 0,5mm.

Abbildung 40: Messpunkte ML05-16_1. Maßstabbalken: 1mm.

Abbildung 41: Messpunkte ML05-16_2. Maßstabbalken: 2mm.

Abbildung 42: Messpunkte ML05-16_3. Maßstabbalken: 1mm.

Abbildung 43: Messpunkte ML07-1B_1 Teil 1. Maßstabbalken: 1mm.

Abbildung 44: Messpunkte ML07-1B_1 Teil 2. Maßstabbalken: 1mm.

Abbildung 45: Messpunkte ML07-1B_2. Maßstabbalken: 1mm.

Abbildung 46: Messpunkte ML09-16. Maßstabbalken: 0,5mm.

Abbildung 47: Messpunkte BA7_1. Maßstabbalken: 1mm.

Abbildung 48: Messpunkte BA7_2. Maßstabbalken: 1mm.

Abbildung 49: Messpunkte BA10_1. Maßstabbalken: 1mm.

Abbildung 50: Messpunkte BA10_2. Maßstabbalken: 2mm.